

Development of 1,2,3-Triazoles employing Copper Oxide/Reduced Graphene Oxide Nanocomposite

Sable Ashok¹, Pandey Gayatri², Srivastava Sonia Chahar³, Chauhan Manmohan Singh^{2*} and Pareek Sonu^{1*}

1. Department of Chemistry, JECRC University, Jaipur, INDIA

2. Amity University Rajasthan, Jaipur, 303002, INDIA

3. S.S. Jain Subodh P.G. College, Jaipur, 302004, INDIA

*mschauhan@jpr.amity.edu; sonu.pareek@jecrcu.edu.in

Abstract

A one-pot approach was studied for synthesising 1,2,3-triazole derivatives with alkyne and sodium azide over reduced copper oxide and graphene oxide catalysts. The catalyst is synthesised in one pot using the ultrasonication process. The characterization of prepared catalyst was done using PXRD, FTIR, FESEM, EDX/EDS, TGA and TEM. The product was separated by simply washing the crude reaction residue with ethanol, then evaporating the solvent.

The catalyst was recycled for use in future reactions. The azides are created *in situ*, hence this technique eliminates the need to handle dangerous azides. This procedure provides broad access to a wide range of 1,2,3-triazoles with various substituents.

Keywords: 1,2,3-Triazoles, Copper oxide, Graphene oxide, Nanocomposite.

Introduction

Most important classes of N-containing heterocyclic compounds, 1,2,3-triazoles have drawn a lot of interest as functional materials as well as biologically active pharmaceuticals^{6,7,24,28,39,41,42}. Furthermore, the usage of these compounds in a variety of industries including organic semiconductors, dyes, dehydroannulenes and electroluminescent materials, is drawing a lot of attention^{9,13,16,17,20,22,23,26,27,31,43,47}. Numerous techniques have been devised for the manufacture of 1,2,3-triazoles because of their inherent significance. One of the most effective synthetic application tools in organic synthesis is Huisgen's 1,3-dipolar cycloaddition reaction of terminal alkynes and organic azides, catalysed by homogeneous CuI salts (CuAAC).

Because organic azides are poisonous and dangerous, handling them is not safe. Alkyl azides can be readily synthesised via the displacement reaction of sodium azide with alkyl halides, although in some circumstances, separation and purification might be difficult. However, the process of making aryl azides from aromatic amines is more complicated. As a result, for triazole synthesis, a one-pot procedure comprising the reaction of azides generated *in situ* from the suitable precursors and alkynes is very desirable. Recently, a number of these one-pot reactions catalysed by different Cu compounds have been reported^{8,15}. Heterogeneous copper, which is achieved by immobilising

copper nanoparticles on a variety of heterogeneous organic and inorganic substrates, may also catalyse the click reaction¹⁴. However, this click reaction requires a large catalyst loading with bases and is relatively sluggish when copper metal alone is used as the catalyst. Without the need for additional bases or supports, Jin and colleagues recently created an intriguing monolithic nanoporous Cu catalyst whose nanoporosity structure of Cu surface led to a considerable improvement of catalytic activity in click chemistry⁴⁵.

As a consequence, developing a nanostructure on the surface of monolithic copper is not only useful for producing high-catalytic activity catalysts for use in click chemistry, but it also simplifies the catalyst project's recovery procedure. Research into the development and manufacturing of catalysts with enhanced catalytic activity is becoming increasingly important.

Because of their increased surface/volume ratio, nanoparticles have attracted a lot of interest as catalysts. Graphene oxide presents intriguing mechanical, electrical and thermal characteristics. Its enormous surface area and diverse functional groups allow for chemical changes, making graphene oxide a valuable study target³². It also serves as a useful catalyst support.

Consequently, researchers doped NPs on the GO. This prevented the requirement for an additional stabilising agent by internally stabilising the NPs. Metal/graphene oxide nanocomposites are critical in a wide range of research domains including catalysis, sensors, photocatalysis, organic synthesis reduction, toxic metal ion elimination, cellular imaging, drug administration and many more properties recorded in literature²⁵. Copper, a cheap metal, has a wide variety of catalytic activity, from heterocycle production to C-C coupling^{19,25,29}. We were inspired to develop a copper oxide/reduced graphene oxide nanocomposite (CuO/rGO) for catalysis. Our study presents a CuO/rGO nanocomposite catalyst that is efficient, green and sustainable for triazole production. Using various ethynylbenzene derivatives and sodium azide, we were able to synthesise several disubstituted 1,2,3-triazoles in large quantities.

Material and Methods

The materials used were purchased from Sigma Aldrich like sodium boric acid, potassium permanganate, graphite flakes, hydrogen peroxide and 4-nitrophenol. Cu K radiation with a wavelength of 0.15418 nm is used in PXRD to detect the powder characteristics of the manufactured material.

Furthermore, FT-IR analysis was performed on the generated materials to track and to identify the peaks of different functional groups. Thermo-Gravimetric measurements were performed at a heating rate of 10°C in a nitrogen environment using the Perkin Elmer STA 6000. With a point resolution of 0.24, the 200 Kv Tecnai G2 20 STWIN [FEI] TEM provides excellent resolution. EDS/EDX provides the elemental composition of the sample. The synthetic material's morphology was investigated through the use of Field Emission Scanning Electron Microscopy.

Preparation of Metal Oxide decorated reduced Graphene Oxide Nanoparticles: Graphene oxide is prepared as reported earlier¹¹. 1g of graphene oxide is added to 200ml of distilled water in a beaker. Then, it was sonicated for 10 min. After that, CuO (400 mg) and distilled water (100 ml) were added to another beaker and sonicated for 10 minutes. After sonication, both solutions were mixed with the addition of sodium borohydride (20mg). The reaction mixture was left to stir for 4 hours at room temperature. After that, it was filtered, washed multiple times with ethanol and dried in an oven for 8 to 10 hours at 80°C to produce copper-decorated reduced graphene oxide (rGO-CuO)^{3,48}.

Catalytic Reaction of prepared material: In a round bottom flask, 1-chloro-4-ethynylbenzene(100mg) and methanol (10ml) are added and stirred for some time. Then, sodium azide (57mg) is added followed by addition of catalyst (10mg). The reaction mixture is stirred at $50\text{--}60^{\circ}\text{C}$ for 16h. The reaction crude was extracted with dichloromethane and distilled water. After drying over MgSO_4 , the mixture was poured into a celite pad. The solvent was evaporated under reduced pressure. For the structural analysis of desired products, the crude products were purified by recrystallization with chloroform and hexane to get off white solid. Similarly with different derivatives of 1-chloro-4-ethynylbenzene(1-ethynyl-4-methoxybenzene, 5-ethynyl-2-fluoropyridine, ethynylbenzene, 1-(4-ethynylphenyl)-1H-pyrazole, 6-ethynyl-2-methylbenzo[d]thiazole, 2-ethynyl-5-fluoropyridine, 7-ethynylindolin-2-one, methyl 2-ethynylisonicotinate), same procedure reaction is performed.

Results and Discussion

Fourier Transform Infrared of the prepared catalyst is observed to examine the different functional groups in the catalyst (Figure 1). The peaks present in graphene oxide are 1264 cm^{-1} (C-O epoxy), 1067 cm^{-1} (C-O alkoxy) and 1721 cm^{-1} (C=O carbonyl). In the nanocomposite catalyst, the peaks of the OH functional group and the C=C double bond vanished and the intensity of the C=O, C-OH and C=O peaks decreased, confirming the reduction of graphene oxide during preparation. This suggests that graphene oxide will be reduced in addition to the nanocomposite's synthesis^{10,30,34}. Powder X-ray diffraction patterns of the prepared catalyst (Figure 2) shows a broad peak at $2\theta=25^{\circ}$. Then, diffraction peaks at $2\theta = 28.72^{\circ}(002)$, $38.99^{\circ}(111)$, $42.41^{\circ}(111)$, $46.47^{\circ}(200)$, $50.53^{\circ}(202)$, $53.46^{\circ}(020)$, $60.09^{\circ}(202)$, $64.06^{\circ}(220)$, $66.82^{\circ}(022)$, $69.82^{\circ}(113)$ and $72.90^{\circ}(311)$ are almost similar to the standard XRD data (JCPDS card no. 89-2530).

Thermogravimetric analysis (Figure 3) is used to check the thermal stability of prepared catalyst in the temperature range of $10^{\circ}/\text{min}$ to 900°C . It is observed that approx. 12 % weight loss occurred till 150°C . The elemental composition of prepared catalyst was examined using Energy Dispersive Spectroscopy. The mapping gives a clear confirmation about proper arrangement of CuO on rGO sheets. The elemental composition of the nano-composite is carbon 78.08 wt%, copper 15.70 wt% and oxygen 6.22 wt %³⁰. The surface morphology of prepared catalyst is examined using Field Emission Scanning Electron Microscopy (Figure 4a, 4b).

It is clearly shown in the images that copper oxide particles are attached on the fringes of graphene oxide. The diameter of CuO is between 6nm and 10nm^{47,48}. The generated catalyst's shape and size are depicted in the transmission electron microscopy pictures. The TEM image (Figure 5a,5b) at high magnification clearly shows the spherical form of copper oxide. The interplanar lattice shown in the lattice fringes correlates to 111 atomic planes in the monoclinic CuO lattice. It was found that the particle size ranged from 18 to 45 nm.

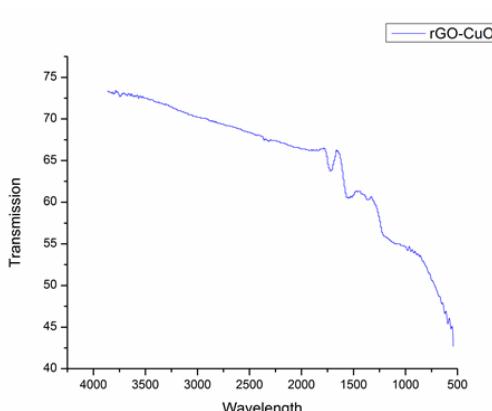


Figure 1: FTIR of catalyst

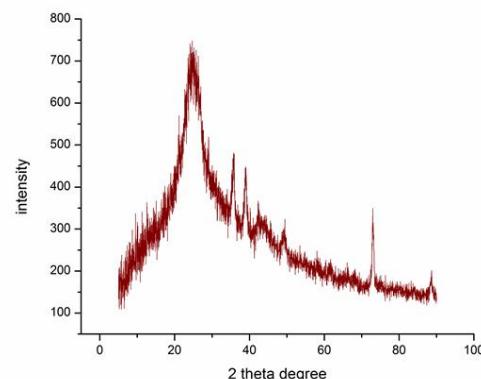


Figure 2: PXRD of catalyst

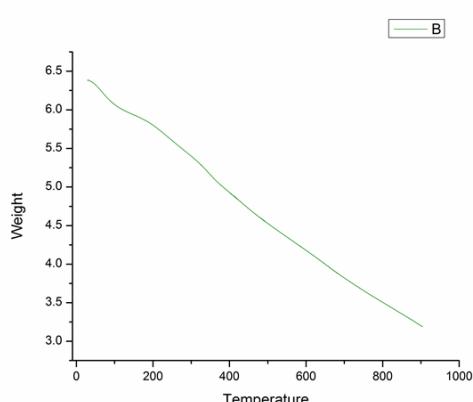


Figure 3: TGA of catalyst

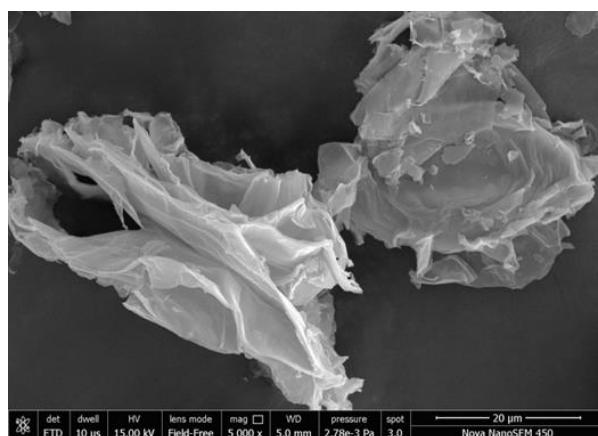


Figure 4a: SEM

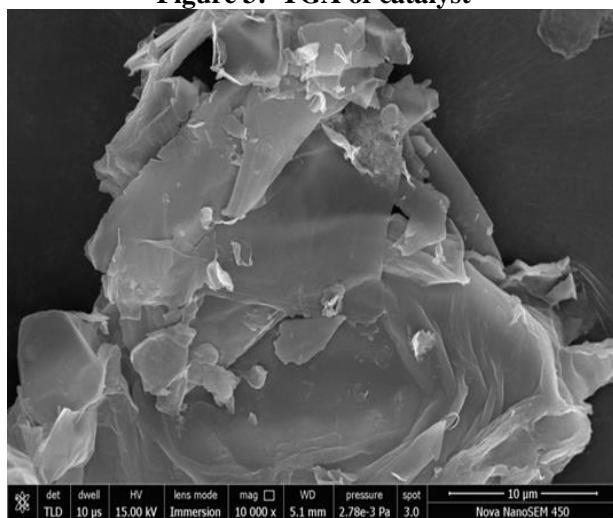


Figure 4b: SEM

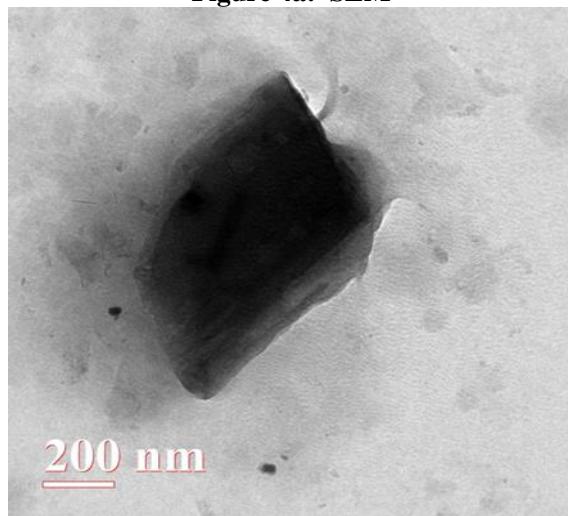


Figure 5a: TEM

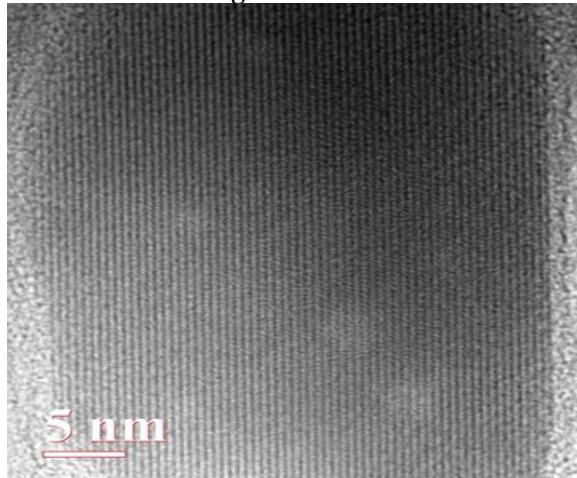
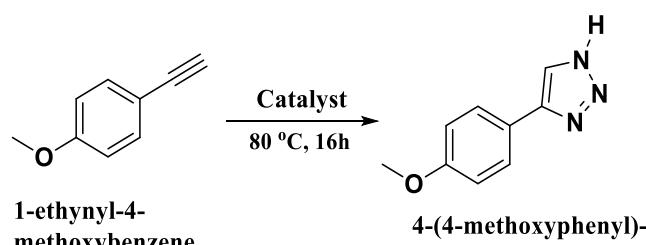
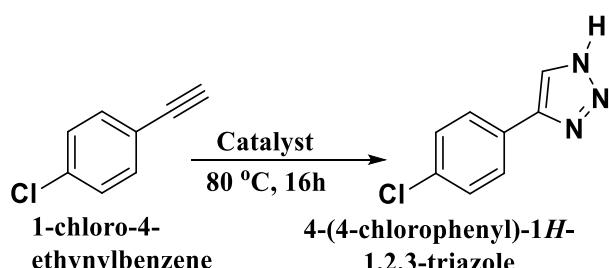
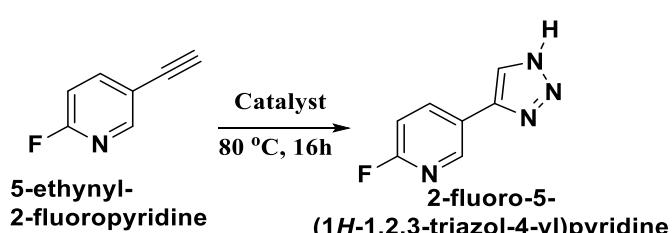



Figure 5b: TEM


Catalytic Reactions: To optimize the reaction conditions, a series of experiments were carried out using different derivatives of 1-ethynyl-4-methoxy benzene, sodium azide and methanol as a solvent. It was found that with methyl 2-ethynylisonicotinate and sodium azide (entry-11), the reaction gives better results (79%) (Tables 1 and 2). Using derivatives 1-ethynyl-4-methoxybenzene (entry 1), 5-ethynyl-2-fluoropyridine (entry 2), 6-ethynyl-2-methylbenzo[d]thiazole (entry 6), 2-ethynyl-5-fluoropyridine (entry 7) and in entries 9, 10, the yields are

considerable i.e. more than 60%. It was found that with 7-ethynylindolin-2-one(entry-8) and sodium azide, no desired product was formed.

a) Synthesis of 4-(4-methoxyphenyl)-1H-1,2,3-triazole: 100 mg of 1-ethynyl-4-methoxybenzene is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 1). NMR-¹H NMR (400 MHz, DMSO-d₆) δ 3.79(s, 3H), 7.02 (d, J = 8.55, Hz, 1H), 7.78 (d, J = 8.55, 2H), 8.21 (s, 1H), 14.95 (br s, 1H).

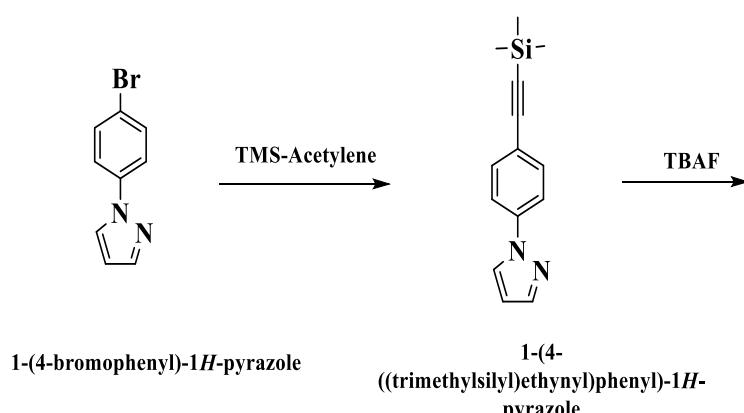


Scheme 1: Synthesis of 4-(4-methoxyphenyl)-1H-1,2,3-triazole

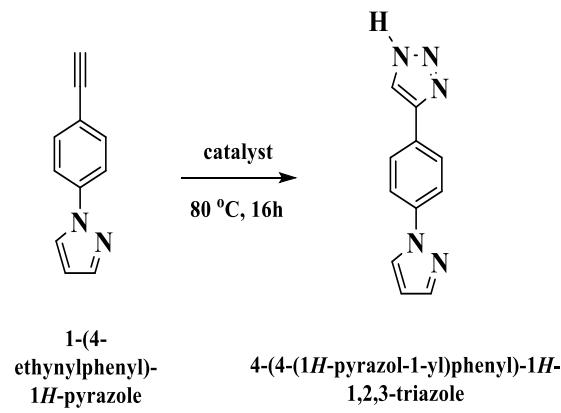
Scheme 3: Synthesis of 4-(4-chlorophenyl)-1H-1,2,3-triazole

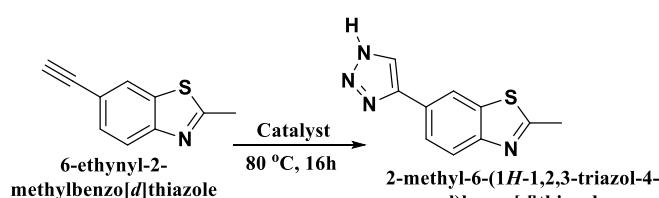
b) Synthesis of 2-fluoro-5-(1H-1,2,3-triazol-4-yl)pyridine: 100 mg of 5-ethynyl-2-fluoropyridine is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 2). NMR-1H NMR (400 MHz, DMSO-d6) δ 7.31(dd, J = 8.56, 2.81Hz, 1H), 8.39-8.46 (m, 2H), 8.73-8.75 (m, 1H), 15.31 (br s, 1H).

Scheme 2: Synthesis of 2-fluoro-5-(1H-1,2,3-triazol-4-yl)pyridine

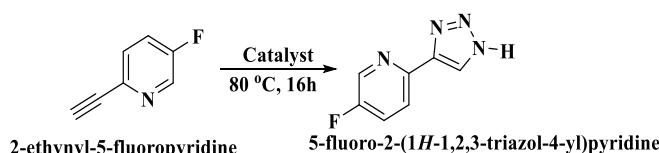

c) Synthesis of 4-(4-chlorophenyl)-1H-1,2,3-triazole: 100 mg of 1-chloro-4-ethynylbenzene is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 3). NMR-1H NMR (400 MHz, DMSO-d6) δ 7.52(dd, J = 8.56Hz, 2H), 7.64(dd, J = 8 Hz, 2.81Hz, 1H), 7.89(d, 12Hz, 1H), 8.31 (s, 1H), 15.31 (br s, 1H).

d) Synthesis of 4-phenyl-1H-1,2,3-triazole: 100 mg of ethynylbenzene is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 4). NMR-1H NMR (400 MHz, DMSO-d6) δ 7.36-7.42(m, 1H), 7.44-7.50(m, 2H), 7.88(d, J =21Hz, 2H), 8.26 (br s, 1H), 14.96 (br s, 1H).


e) Synthesis of 4-(4-(1H-pyrazol-1-yl)phenyl)-1H-1,2,3-triazole: 100 mg of 1-(4-ethynylphenyl)-1H-pyrazole is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 5). ¹H NMR (400 MHz, DMSO-d6) δ 6.56 (s, 1H), 7.76 (s, 1H), 7.76-7.99 (m, 4H), 8.43 (s, 1H), 8.54-8.55(d, J =4Hz, 1H), 14.12 (br,s, 1H).

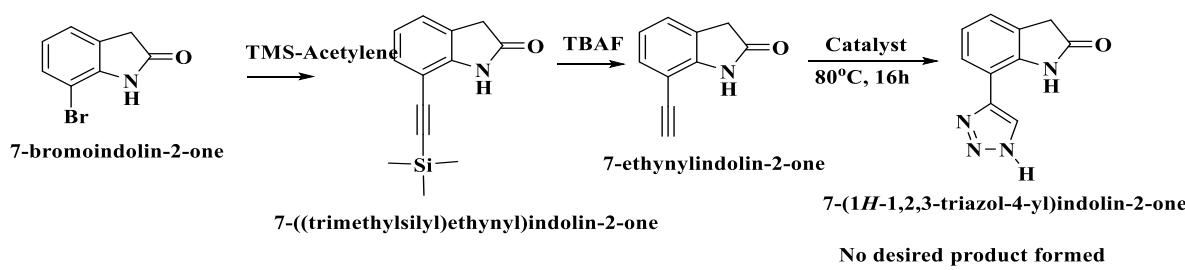

f) Synthesis of 2-methyl-6-(1H-1,2,3-triazol-4-yl)benzo[d]thiazole: 100 mg of 6-ethynyl-2-methylbenzo[d]thiazole is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 6). ¹H NMR (400 MHz, DMSO-d6) δ 2.81 (s, 3H), 7.97 (s, 2H), 8.32 (s, 1H), 8.52 (m, 1H), 15.06 (br s, 1H).

g) Synthesis of 5-fluoro-2-(1H-1,2,3-triazol-4-yl)pyridine: 100 mg of 2-ethynyl-5-fluoropyridine is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 7). ¹H NMR (400 MHz, DMSO-d6) δ 7.30 (br t, J =8.71 2H), 7.88-7.91 (m, 2H), 8.33 (d, J = 8 Hz 1H,) (15.05 (br s, 1H).

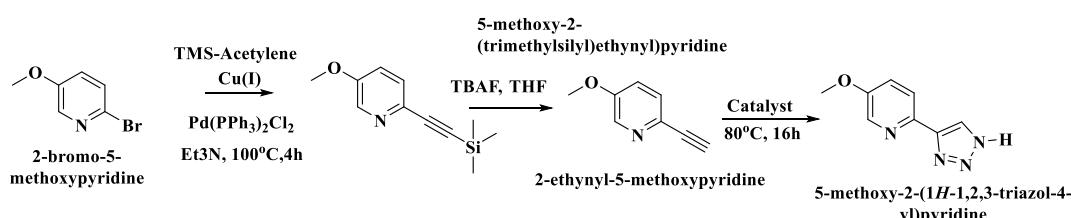


Scheme 5: Synthesis of 4-(4-(1H-pyrazol-1-yl)phenyl)-1H-1,2,3-triazole

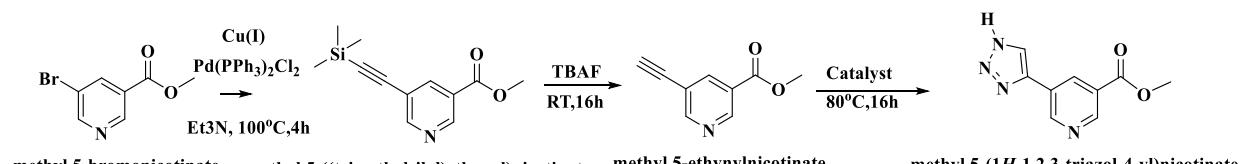
Scheme 6: Synthesis of 2-methyl-6-(1H-1,2,3-triazol-4-yl)benzo[d]thiazole

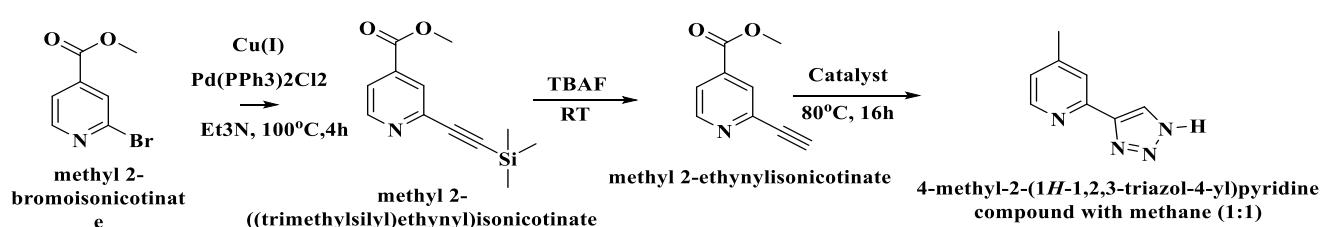

Scheme 7: Synthesis of 5-fluoro-2-(1H-1,2,3-triazol-4-yl)pyridine

h) Synthesis of 7-(1H-1,2,3-triazol-4-yl)indolin-2-one: 100 mg of 7-ethynylindolin-2-one is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 8). NMR- NA (No desired product formed).

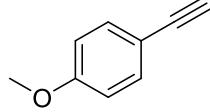
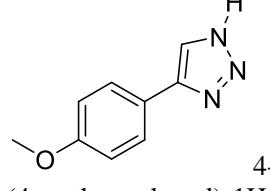
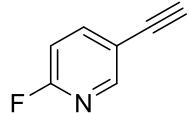
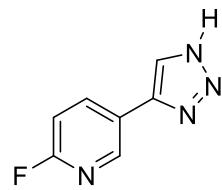
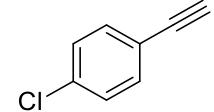
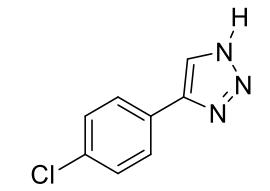
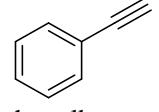
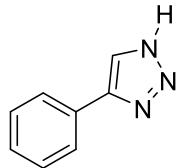
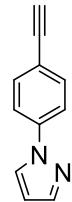
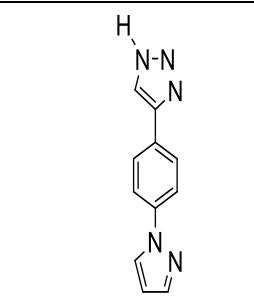

i) Synthesis of 5-methoxy-2-(1H-1,2,3-triazol-4-yl)pyridine: 100 mg of 2-ethynyl-5-methoxypyridine is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 9). 1H NMR (400 MHz, DMSO-d6) δ 3.87 (s, 3H), 7.49-7.51 (d, J = 8 Hz, 1H), 7.91-7.93 (d, J = 8 Hz, 1H), 8.23 (s, 1H), 8.33 (s, 1H), 15.36 (br s, 1H).

j) Synthesis of methyl 5-(1H-1,2,3-triazol-4-yl)nicotinate: 100 mg methyl 5-(1H-1,2,3-triazol-4-yl)nicotinate is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 10). 1H NMR (400 MHz, DMSO-d6) δ 3.93 (s, 3H), 8.65-8.69 (d, J = 18.8 Hz, 2H), 9.05 (s, 1H), 9.32 (s, 1H), 15.44 (br s, 1H).


k) Synthesis of methyl 2-(1H-1,2,3-triazol-4-yl)isonicotinate: 100 mg of methyl 2-ethynylisonicotinate is taken with 10 ml methanol and 57 mg sodium azide followed by addition of catalyst (10 mg) (Scheme 11). NMR-1H NMR (400 MHz, DMSO-d6) δ 3.94 (s, 3H), 7.79-7.80 (d, J = 4.0 Hz, 1H), 8.35-8.61 (m, 2H), 8.84 (d, J = 4.98 Hz, 1H), 15.36 (br s, 1H).


Scheme 8: Synthesis of 7-(1H-1,2,3-triazol-4-yl)indolin-2-one

Scheme 9: Synthesis of 5-methoxy-2-(1H-1,2,3-triazol-4-yl)pyridine

Scheme 10: Synthesis of methyl 5-(1H-1,2,3-triazol-4-yl)nicotinate

Scheme 11: Synthesis of methyl 2-(1H-1,2,3-triazol-4-yl)isonicotinate

Table 1
Optimization of synthesis of different derivatives of 1,2,3- triazole

S.N.	Alkyne	Azide	Product	Solvent	Time	Catalyst (mg) 10 W %	Yield (%)
1	 1-ethynyl-4-methoxybenzene Molecular Weight: 132.16	NaN_3 Sodium azide	 4-(4-methoxyphenyl)-1H-1,2,3-triazole Molecular Weight: 175.19	MeOH	16h	10 mg	80 mg 60%
2	 5-ethynyl-2-fluoropyridine Molecular Weight: 121.11	NaN_3 Sodium azide	 2-fluoro-5-(1H-1,2,3-triazol-4-yl)pyridine Molecular Weight: 164.14	MeOH	16h	10 mg	81 mg 62%
3	 1-chloro-4-ethynylbenzene Molecular Weight: 136.58	NaN_3 Sodium azide	 4-(4-chlorophenyl)-1H-1,2,3-triazole Molecular Weight: 179.61	MeOH	16h	10 mg	71 mg 53%
4	 ethynylbenzene Molecular Weight: 102.14	NaN_3 Sodium azide	 4-phenyl-1H-1,2,3-triazole Molecular Weight: 145.17	MeOH	16h	10 mg	80 mg 56%
5	 1-(4-ethynylphenyl)-1H-pyrazole Molecular Weight: 168.20	NaN_3 Sodium azide	 4-(4-(1H-pyrazol-1-yl)phenyl)-1H-1,2,3-triazole Molecular Weight: 211.23	MeOH	16h	10 mg	90 mg 72%

6	<p>6-ethynyl-2-methylbenzo[d]thiazole Molecular Weight: 173.23</p>	NaN_3 Sodium azide	<p>2-methyl-6-(1H-1,2,3-triazol-4-yl)benzo[d]thiazole Molecular Weight: 216.26</p>	MeOH	16h	10 mg	85mg 68%
7	<p>2-ethynyl-5-fluoropyridine Molecular Weight: 121.11</p>	NaN_3 Sodium azide	<p>5-fluoro-2-(1H-1,2,3-triazol-4-yl) pyridine Molecular Weight: 164.14</p>	MeOH	16h	10 mg	62.96 mg 62%
8	<p>7-ethynylindolin-2-one Molecular Weight: 157.17</p>	NaN_3 Sodium azide	<p>7-(1H-1,2,3-triazol-4-yl) indolin-2-one Molecular Weight: 200.20</p>	MeOH	16h	10 mg	XX g XX % No desired product formed in this reaction
9	<p>2-ethynyl-5-methoxypyridine Exact Mass: 133.05 Molecular Weight: 133.15</p>	NaN_3 Sodium azide	<p>5-methoxy-2-(1H-1,2,3-triazol-4-yl) pyridine Molecular Weight: 176.18</p>	MeOH	16h	10 mg	86 mg 65%
10	<p>methyl 5-ethynylnicotinate Exact Mass: 161.05 Molecular Weight: 161.16</p>	NaN_3 Sodium azide	<p>2-(1H-1,2,3-triazol-4-yl)methyl 5-ethynylnicotinate Molecular Weight: 204.19</p>	MeOH	16h	10 mg	90 mg 71%
11	<p>methyl 2-ethynylisonicotinate Molecular Weight: 161.16</p>	NaN_3 Sodium azide	<p>5-(methyl 2-isonicotinate)-2-(1H-1,2,3-triazol-4-yl) pyridine Molecular Weight: 204.19</p>	MeOH	16h	10 mg	100mg 79%

Table 2
Optimization of synthesis of different derivatives of 1,2,3- triazole with different solvents

S.N.	Catalyst	Temperature	Solvent	Time	Reaction monitoring data in %
1	rGO-CuO	80°C	MeOH	16h	35%
2	rGO-CuO	80°C	DMF	16h	1.28%
3	rGO-CuO	80°C	WATER	16h	2.3%
4	rGO-CuO	80°C	ACETONE	16h	1.6%
5	rGO-CuO	80°C	DMSO	16h	No product
6	rGO-CuO	80°C	ACN	16h	6.24%
7	rGO-CuO	80°C	tBuOH	16h	25%
8	rGO-CuO	80°C	IPA	16h	30%

Conclusion

We have synthesised 1,2,3-triazole derivatives by using alkyne and sodium azide using reduced copper oxide and graphene oxide catalyst. The characterization of prepared catalyst is done using PXRD, FTIR, FESEM, EDX/EDS, TGA and TEM. It was found that with methyl 2-ethynylisonicotinate and sodium azide, the reaction gives better results (79%). Using derivatives 1-ethynyl-4-methoxybenzene, 5-ethynyl-2-fluoropyridine, 6-ethynyl-2-methylbenzo[d]thiazole, 2-ethynyl-5-fluoropyridine (entry-7), the yields are considerable, more than 60%.

References

1. Abd-Elkader O.H. and Deraz N.M., Synthesis and characterization of new copper based nanocomposite, *Int. J. Electrochem. Sci.*, **8**, 8614-8622 (2013)
2. Akhavan O., Ghaderi E. and Esfandiar A., Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication and inactivation by near-infrared irradiation, *The Journal of Physical Chemistry B*, **115(19)**, 6279-6288 (2011)
3. Al-Nafiey A., Kumar A., Kumar M., Addad A., Sieber B., Szunerits S. and Jain S.L., Nickel oxide nanoparticles grafted on reduced graphene oxide (rGO/NiO) as efficient photocatalyst for reduction of nitroaromatics under visible light irradiation, *Journal of Photochemistry and Photobiology A: Chemistry*, **336**, 198-207 (2017)
4. Alonso F., Moglie Y., Radivoy G. and Yus M., Multicomponent synthesis of 1, 2, 3-Triazoles in water catalyzed by copper nanoparticles on activated carbon, *Advanced Synthesis & Catalysis*, **352(18)**, 3208-3214 (2010)
5. Aparna Y., Rao K.E. and Subbarao P.S., Synthesis and characterization of CuO nano particles by novel sol-gel method, In Proceedings of the 2nd International Conference on Environment Science and Biotechnology, **48**, 156-160 (2012)
6. Astruc D. et al, Click metallocopolymers and their functions, *Synlett*, **26(11)**, 1437-1449 (2015)
7. Aucagne V., Hänni K.D., Leigh D.A., Lusby P.J. and Walker D.B., Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures, *Journal of the American Chemical Society*, **128(7)**, 2186-2187 (2006)
8. Baig R.N. and Varma R.S., A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1, 3-dipolar cycloadditions, *Green Chemistry*, **14(3)**, 625-632 (2012)
9. Capdevielle P., Lavigne A., Sparfel D., Baranne-Lafont J., Nguyen K.C. and Maumy M., Mechanism of primary aliphatic amines oxidation to nitriles by the cuprous chloride-dioxygen-pyridine system, *Tetrahedron Letters*, **31(23)**, 3305-3308 (1990)
10. Dan H. et al, Green synthesis of Cu nanoparticles supported on straw-graphene composite for catalytic reduction of p-nitrophenol, *Journal of Cleaner Production*, **283**, 124578 (2021)
11. Dixon D. and Pando Morejón O., Recent developments in the reduction of nitro and nitroso compounds (2014)
12. Duru İ., Ege D. and Kamali A.R., Graphene oxides for removal of heavy and precious metals from wastewater, *Journal of Materials Science*, **51**, 6097-6116 (2016)
13. Ellis G.P. and Romney-Alexander T.M., Cyanation of aromatic halides, *Chemical Reviews*, **87(4)**, 779-794 (1987)
14. Gholinejad M. and Jeddi N., Copper nanoparticles supported on agarose as a bioorganic and degradable polymer for multicomponent click synthesis of 1, 2, 3-triazoles under low copper loading in water, *ACS Sustainable Chemistry & Engineering*, **2(12)**, 2658-2665 (2014)
15. Hudson R., Li C.J. and Moores A., Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water, *Green Chemistry*, **14(3)**, 622-624 (2012)
16. Kajimoto T., Takahashi H. and Tsuji J., Copper-catalyzed oxidation of o-phenylenediamines to cis, cis-mucononitriles, *The Journal of Organic Chemistry*, **41(8)**, 1389-1393 (1976)
17. Kotani M., Koike T., Yamaguchi K. and Mizuno N., Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction, *Green Chemistry*, **8(8)**, 735-741 (2006)
18. Kumar B.A., Reddy K.H.V., Madhav B., Ramesh K. and Nageswar Y.V.D., Magnetically separable CuFe₂O₄ nano particles catalyzed multicomponent synthesis of 1, 4-disubstituted 1, 2, 3-triazoles in tap water using ‘click chemistry’, *Tetrahedron Letters*, **53(34)**, 4595-4599 (2012)

19. Li E., Xu X., Li H., Zhang H., Xu X., Yuan X. and Li Y., Copper-catalyzed synthesis of five-membered heterocycles via double C–N bond formation: an efficient synthesis of pyrroles, dihydropyrroles and carbazoles, *Tetrahedron*, **65**(44), 8961-8968 (2009)

20. Li F., Chen J., Zhang Q. and Wang Y., Hydrous ruthenium oxide supported on Co_3O_4 as efficient catalyst for aerobic oxidation of amines, *Green Chemistry*, **10**(5), 553-562 (2008)

21. Li X., Huang X., Liu D., Wang X., Song S., Zhou L. and Zhang H., Synthesis of 3D hierarchical Fe_3O_4 /graphene composites with high lithium storage capacity and for controlled drug delivery, *The Journal of Physical Chemistry C*, **115**(44), 21567-21573 (2011)

22. Maeda Y., Nishimura T. and Uemura S., Copper-catalyzed oxidation of amines with molecular oxygen, *Bulletin of the Chemical Society of Japan*, **76**(12), 2399-2403 (2003)

23. Manjunath Dammalli, Bhavya S.G., Shadakshara Murthy K.R., Rajashekhar S. and Rangaswamy B.E., The repurposing of FDA-approved drugs to stop viral replication in COVID-19 treatment: a comprehensive molecular docking and dynamics analysis, *Res. J. Biotech.*, **18**(12), 55-66 (2023)

24. Manetsch R., Krasiński A., Radić Z., Raushel J., Taylor P., Sharpless K.B. and Kolb H.C., *In situ* click chemistry: enzyme inhibitors made to their own specifications, *Journal of the American Chemical Society*, **126**(40), 12809-12818 (2004)

25. Maria Jastrzębska A., Roman Olszyna A., Jureczko J. and Kunicki A., New reduced graphene oxide/alumina (RGO/ Al_2O_3) nanocomposite: innovative method of synthesis and characterization, *International Journal of Applied Ceramic Technology*, **12**(3), 522-528 (2015)

26. Mihailović M.L., Stojiljković A. and Andrejević V., The conversion of unbranched primary alkyl and arylalkyl amines to nitriles by means of lead tetraacetate, *Tetrahedron Letters*, **6**(8), 461-464 (1965)

27. Mori K., Yamaguchi K., Mizugaki T., Ebitani K. and Kaneda K., Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen, *Chemical Communications*, **5**, 461-462 (2001)

28. Nandivada H., Jiang X. and Lahann J., Click chemistry: versatility and control in the hands of materials scientists, *Advanced Materials*, **19**(17), 2197-2208 (2007)

29. Panda N. and Jena A.K., Cu/fe-catalyzed carbon-carbon and carbon-heteroatom cross-coupling reactions, *Organic Chem. Curr. Res.*, **4**, 1000130 (2015)

30. Pandey G. et al, Comparative study of $\text{NiO}/\text{CuO}/\text{Ag}$ doped graphene based materials for reduction of nitroaromatic compounds and degradation of dye with statistical study, *Scientific Reports*, **14**(1), 2077 (2024)

31. Porta F., Crotti C., Cenini S. and Palmisano G., Oxidation of amines in the presence of ruthenium complexes: molecular oxygen and iodosylbenzene as oxidants, *Journal of Molecular Catalysis*, **50**(3), 333-341 (1989)

32. Rao C.E.E., Sood A.E., Subrahmanyam K.E. and Govindaraj A., Graphene: the new two-dimensional nanomaterial, *Angewandte Chemie International Edition*, **48**(42), 7752-7777 (2009)

33. Rostovtsev V.V., Green L.G., Fokin V.V. and Sharpless K.B., A stepwise huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes, *Angewandte Chemie International Edition*, **41**(14), 2596-2599 (2002)

34. Sarkar C. and Dolui S.K., Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol, *RSC Advances*, **5**(75), 60763-60769 (2015)

35. Schedin F., Geim A.K., Morozov S.V., Hill E.W., Blake P., Katsnelson M.I. and Novoselov K.S., Detection of individual gas molecules adsorbed on graphene, *Nature Materials*, **6**(9), 652-655 (2007)

36. Sharghi H., Khalifeh R. and Doroodmand M.M., Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1, 2, 3-Triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a “Green” solvent, *Advanced Synthesis & Catalysis*, **351**(1-2), 207-218 (2009)

37. Shin J.A., Lim Y.G. and Lee K.H., Copper-catalyzed azide–alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst, *The Journal of Organic Chemistry*, **77**(8), 4117-4122 (2012)

38. Tornøe C.W., Christensen C. and Meldal M.J., Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, *Org. Chem.*, **67**, 3057-3062 (2002)

39. Tron G.C., Pirali T., Billington R.A., Canonico P.L., Sorba G. and Genazzani A.A., Click chemistry reactions in medicinal chemistry: Applications of the 1, 3-dipolar cycloaddition between azides and alkynes, *Medicinal Research Reviews*, **28**(2), 278-308 (2008)

40. Wei D. and Liu Y., Controllable synthesis of graphene and its applications, *Advanced Materials*, **22**(30), 3225-3241 (2010)

41. Wu P. et al, Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper (I)-catalyzed ligation of azides and alkynes, *Angewandte Chemie*, **116**(30), 4018-4022 (2004)

42. Yamada Y.M., Ohno A., Sato T. and Uozumi Y., Instantaneous Click Chemistry by a Copper-Containing Polymeric-Membrane-Installed Microflow Catalytic Reactor, *Chemistry—A European Journal*, **21**(48), 17269-17273 (2015)

43. Yamaguchi K. and Mizuno N., Efficient heterogeneous aerobic oxidation of amines by a supported ruthenium catalyst, *Angewandte Chemie International Edition*, **42**(13), 1480-1483 (2003)

44. Yan J. and Wang L., Synthesis of 1, 4-disubstituted 1, 2, 3-triazoles by use of copper (I) and amino acids ionic liquid catalytic system, *Synthesis*, **3**, 447-452 (2010)

45. Yan M. and Yan M., Nanoporous copper metal catalyst in click chemistry: Nanoporosity dependent activity without supports and bases, Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions, 17-53 (2014)

46. Zhang N., Zhang Y. and Xu Y.J., Recent progress on graphene-based photocatalysts: current status and future perspectives, *Nanoscale*, **4**(19), 5792-5813 (2012)

47. Zhang Y., Xu K., Chen X., Hu T., Yu Y., Zhang J. and Huang J., Highly selective aerobic oxidation of primary amines to nitriles by ruthenium hydroxide, *Catalysis Communications*, **11**(11), 951-954 (2010)

48. Zhou T., Chen F., Liu K., Deng H., Zhang Q., Feng J. and Fu Q., A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite, *Nanotechnology*, **22**(4), 045704 (2010).

(Received 18th October 2024, accepted 05th December 2024)